Package: jrSiCKLSNMF 2.0.0
jrSiCKLSNMF: Clustering Single-Cell Multimodal Omics Data with Joint Graph Regularized Single-Cell Kullback-Leibler Sparse Non-Negative Matrix Factorization
Methods to perform Joint graph Regularized Single-Cell Kullback-Leibler Sparse Non-negative Matrix Factorization (jrSiCKLSNMF, pronounced "junior sickles NMF") on quality controlled multi-assay single-cell omics count data, specifically dual-assay scRNA-seq and scATAC-seq data. 'jrSiCKLSNMF' extracts meaningful latent factors that are shared across omics views. These factors enable accurate cell-type clustering, and facilitate visualizations. Also includes methods for mini- batch updates and other adaptations for larger datasets.
Authors:
jrSiCKLSNMF_2.0.0.tar.gz
jrSiCKLSNMF_2.0.0.zip(r-4.5)jrSiCKLSNMF_2.0.0.zip(r-4.4)jrSiCKLSNMF_2.0.0.zip(r-4.3)
jrSiCKLSNMF_2.0.0.tar.gz(r-4.5-noble)jrSiCKLSNMF_2.0.0.tar.gz(r-4.4-noble)
jrSiCKLSNMF.pdf |jrSiCKLSNMF.html✨
jrSiCKLSNMF/json (API)
NEWS
# Install 'jrSiCKLSNMF' in R: |
install.packages('jrSiCKLSNMF', repos = c('https://ellisdoro.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ellisdoro/jrsicklsnmf/issues
- SimData - A simulated dataset for use with jrSiCKLSNMF
- SimSickleJrSmall - A small SickleJr object containing a subset of data from the SimData data object. Contains the completed analysis from the 'Getting Started' vignette for a small subset of 10 cells with 150 genes and 700 peaks. The clusters derived from this dataset are not accurate; this dataset is intended for use with code examples.
Last updated 9 months agofrom:c0c5253223. Checks:1 ERROR, 4 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | FAIL | Feb 18 2025 |
R-4.5-win-x86_64 | WARNING | Feb 18 2025 |
R-4.5-linux-x86_64 | WARNING | Feb 18 2025 |
R-4.4-win-x86_64 | WARNING | Feb 18 2025 |
R-4.3-win-x86_64 | WARNING | Feb 18 2025 |
Exports:AddSickleJrMetadataBuildKNNGraphLaplaciansBuildSNNGraphLaplaciansCalculateUMAPSickleJrClusterSickleJrCreateSickleJrDetermineClustersDetermineDFromIRLBAGenerateWmatricesandHmatrixjrSiCKLSNMFlossCalcRWrapperMinibatchDiagnosticPlotNormalizeCountMatricesPlotLossvsLatentFactorsPlotSickleJrUMAPRunjrSiCKLSNMFSetLambdasandRegsSetWandHfromWHinitialsSickleJr
Dependencies:abindaskpassassortheadbackportsbase64encbeachmatBHBiobaseBiocGenericsBiocNeighborsBiocParallelBiocSingularblusterbootbroombslibcachemcarcarDataclasscliclusterclValidcodetoolscolorspacecorrplotcowplotcpp11crayoncrosstalkcurldata.tableDelayedArraydendextendDerivdigestdoBydplyrdqrngDTedgeRellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapflashClustfontawesomeforeachformatRFormulafsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegridExtragtableherehighrhtmltoolshtmlwidgetshttpuvhttrigraphIRangesirlbaisobanditeratorsjquerylibjsonlitekknnknitrlabelinglambda.rlaterlatticelazyevalleapslifecyclelimmalme4locfitmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemetapodmgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivopensslpbapplypbkrtestpillarpkgconfigplyrpngpolynompromisespurrrquantregR6rappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRcppProgressRcppTOMLRdpackreformulasreshape2reticulaterlangrmarkdownrprojrootRSpectrarstatixrsvdS4ArraysS4VectorssassScaledMatrixscalesscatterplot3dscranscuttleSingleCellExperimentsitmosnowSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsumaputf8vctrsviridisviridisLitewithrxfunXVectoryaml